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Abstract

This paper presents Multi-Agent Deep Hedging (MADH), a computational frame-
work that extends deep learning-based financial planning and pricing techniques to
markets with multiple strategic participants. Unlike traditional deep hedging, which
assumes a passive market environment, MADH models the market as a multi-agent sys-
tem by augmenting gradient-based optimization with a differentiable market-clearing
mechanism, enabling agents to internalize their market impact and optimize poli-
cies through gradient backpropagation. In a detailed case study, we apply MADH
to model prosumer behavior on electricity trading platforms. We benchmark decen-
tralized MADH using both synthetic and real-world data against a welfare-maximizing
central optimizer. Results demonstrate that decentralized agents robustly converge to
high-quality policies, engaging in dynamic hedging and strategic capacity withholding
while achieving near-optimal welfare. Moreover, we document that MADH perfor-
mance scales well to a large setting with 32 agents.
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1 Introduction

Most hedging and trading methods treat market prices as exogenous, assuming that rebal-
ancing and trading decisions can be optimized without considering their effect on the price
dynamics. But in many environments there are only few market actors or a large agent
whose quotes moves prices, in which case this assumption breaks down. To optimize hedg-
ing decisions in such environments, we introduce Multi-Agent Deep Hedging (MADH), a
novel architecture that extends financial deep hedging techniques to multi-agent settings.
We apply our architecture to peer-to-peer electricity trading among prosumers, which can
be modeled as a stochastic (Markov) game. We benchmark MADH in this environment,
show its ability to scale to many agents, and analyse the equilibrium battery-charging and
curtailment strategies that emerge.

1.1 Multi-Agent Deep Hedging

Deep Hedging (DH) is a pioneering machine learning approach introduced in Buehler et al.
(2019) that has seen widespread success in industry applications, due to the simplicity of
its architecture and its scalability to high-dimensional markets involving large numbers
of assets. DH models multi-step financial planning problems using a stack of shallow
neural networks (NNs), or alternatively, a recurrent NN or a long short-term memory
(LSTM) network. Each network in the stack learns the policy corresponding to investment
decisions at a specific time step, with gradients propagated through the entire architecture
to optimize a utility objective over the investment horizon. This approach has found broad
applications beyond traditional finance, including in balance sheet optimization (Krabichler
and Teichmann, 2023) and strategic planning in energy consumption and storage (Curin
et al., 2021).

We extend the DH framework to a multi-agent setting. Specifically, we equip each agent
with a NN policy and model the market-clearing price as a function of all agents’ actions.
This enables each agent to internalize its individual price impact via joint gradient updates,
leveraging standard backpropagation. Rather than treating the market as a passive or fixed
environment, the MADH framework endogenizes market dynamics – explicitly modeling
how agents’ decisions shape prices and how those prices, in turn, influence agent incentives.
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1.2 Application

We apply our MADH architecture to prosumer electricity trading platforms (PEPs) to
study its performance. With the growing adoption of distributed energy resources, such as
photovoltaics and batteries, individual consumers are increasingly becoming producers and
need to steer their energy assets. PEPs are seen as one promising approach that enables
individuals to trade their energy production and needs by creating digital marketplaces on
which prosumers can exchange energy bilaterally instead of relying on the grid.

However, PEPs are complex strategic games for prosumers. Formally, the environment
corresponds to a partially observable Markov game (POMG) with incomplete information,
where each agent decides on battery charging and photovoltaic curtailment to minimize
daily energy costs. The choice of battery charge in particular offers a dynamic hedge against
two types of uncertainty. First, it lets the agent buffer future shocks to her own net demand
by shifting energy across time. Second, because the platform prices react endogenously to
the joint production, demand, and storage choices of all agents, the same intertemporal
shift also hedges the systemic price risk created by the stochastic generation and demand
of others. Hedging the battery charge optimally over time is therefore a complex task for
each prosumer and in practice prosumers cannot be expected to become expert energy
traders; they are likely to instead rely on algorithms and automated tools to manage their
assets.

Our MADH application allows for a systematic analysis of prosumer incentives and
behavior and provides a tool for the assessment of emerging market regulations for energy
trading platforms. Regulatory policies can be represented in the POMG as the “rules of
the game.” Our MADH framework then allows analyzing the emergent agent behavior and
its impact on economic welfare and grid stability. In this paper, we evaluate MADH by
comparing the decentralized learning of MADH, where each agent independently optimizes
its policy while internalizing price effects, against a centralized planner that jointly opti-
mizes all actions. This provides a benchmark to quantify the potential efficiency loss from
decentralization and strategic behavior.

1.3 Experimental Findings

Our results demonstrate that decentralized agents that internalize their effect on market
prices (i.e., with access to the full computation graph) learn sophisticated, strategically-
aware policies. First, agents optimize battery steering dynamically by charging their bat-
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tery during the day (when photovoltaic production depresses market prices) and discharg-
ing in the evening (when market prices are high). Second, agents learn to strategically
withhold capacity by not discharging their battery fully by the end of the day.1 That is,
agents learn to ‘coordinate’ to restrict market supply in late evening hours in order to
avoid market prices dropping to the feed-in tariff (the lower bound on the market price).
Third, this emergent coordination breaks down when agents are not fully price-aware, i.e.
when they do not have access to the full computation graph. In addition, while agents
with access to the full computation graph achieve near-optimal efficiency—total welfare is
almost identical to welfare achieved by the central optimizer—, when agents instead do not
internalize their price effect, we observe a notable drop in efficiency. Fourth, we compute
individual agents’ regret and consistently find regret values of less than 1% relative to the
learned policy, indicating that agents converge to approximate Nash equilibria.

We further document that when agents’ battery endowments are heterogeneous, decen-
tralized optimization results in a redistribution of surplus from agents without a battery
to agents with a battery while total welfare is again almost identical to the central op-
timizer. Because all agents can always cover their entire demand by drawing from the
grid at grid prices when needed, capacity withholding results in higher platform prices,
but not a decrease in total quantity demanded. As a result, when agents with a battery
strategically move market prices, individual surplus is transferred between agents without
changing total welfare.

We then show that MADH scales to large settings. Each agent’s demand and sup-
ply profile is synthesized from anonymized smart-meter data of households and a publicly
available, physics-based photovoltaic model. Agents robustly learn and converge to stable,
strategically-sophisticated policies across experiments. We also observe that agents with
a battery substantially outperform prosumers without a battery, particularly if the bat-
tery size is large. For some combinations of profiles with a large battery, agents can in
fact achieve negative cost, i.e. a positive profit from participation on the platform. The
results show that MADH combines strong scalability with practical simplicity and is poten-
tially a powerful framework to study behavior and optimize decision-making in multi-agent
systems.

1Note that this is a finite game and thus discharging fully in the final hour is strictly profit-maximizing
at any positive market price, ceteris paribus.
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Related Literature

This paper is situated at the intersection of multiple strands of literature. As discussed
above, we build on the development of Deep Hedging for the hedging of financial port-
folios in (Buehler et al., 2019) and related works. We also add to an existing literature
that demonstrates the effectiveness of MARL for managing local energy resources under
uncertainty, particularly for load scheduling, storage coordination, and price-sensitive be-
havior in microgrids (e.g., Roesch et al., 2020; Samadi et al., 2020; Gao et al., 2021).
However, this literature emphasizes system-level energy costs or improved voltage con-
trol and typically does not study strategic behavior of individual agents.2 Examples in-
clude the use of Multi-Agent Deterministic Policy Gradient (MADDPG) to learn bidding
strategies (Samende et al., 2022) and Factored Multi-Agent Centralized Policy Gradients
(FACMAC), which uses a factored critic to improve scalability while managing network
voltage constraints (Charbonnier et al., 2025). Feng and Liu (2025), for instance, propose
a consensus-based MARL algorithm where agents share and average their critic network
parameters to cooperatively align their policies and ensure network feasibility. Our work
employs neither a Centralized Learning and Decentralized Execution approach nor requires
direct agent communication.

In addition, there is an extensive literature on the design and taxonomy of prosumer
trading markets (e.g., Khorasany et al., 2018; Sousa et al., 2019; Rodrigues et al., 2020;
Zhou et al., 2020; Domènech Monfort et al., 2022; Bukar et al., 2023; Hönen et al., 2023a;
Tushar et al., 2021; Tsaousoglou et al., 2022; Tushar et al., 2023). Our analytical frame-
work adds to this literature by providing a large-scale simulation tool to investigate how
decentralized policies emerge and perform under varying market designs and regulatory
conditions. Our findings also contribute to the ongoing discussions on the governance of
energy platforms (Weiller and Pollitt, 2013; Rosen and Madlener, 2016; Kloppenburg and
Boekelo, 2019; Capper et al., 2022).

The strategic behavior of agents that we document is also connected to the literature
on algorithmic collusion by sellers (e.g., Calvano et al., 2020; Eschenbaum et al., 2022),
in particular on online marketplaces (e.g., Brero et al., 2022). This literature focuses on
price-setting in stylized oligopoly games with standard learners (Q-learning in particular),
while we study quantity-setting in a tailored application to energy platforms with a novel

2Though MARL has previously been applied to automate agent bidding strategies in P2P trading envi-
ronments (e.g., Zhang et al., 2018b,a; Qiu et al., 2021).
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MADH architecture.

1.4 Overview

The paper is structured as follows. Section 2 develops the Multi-Agent Deep Hedging
(MADH) architecture. Section 3 introduces our application of prosumer trading as a
POMG, while section 4 outlines the computational framework, including data generation
and training procedures. Section 5 then presents our experimental findings. Finally, Sec-
tion 6 concludes.

2 Multi-Agent Deep Hedging

We propose Multi-Agent Deep Hedging (MADH), a method designed for finite-horizon,
partially observable Markov Games (POMGs) (see Section 3.1). MADH is formulated
as a multi-agent reinforcement learning (MARL) framework, and we introduce two key
variants: (i) a Decentralized Training and Decentralized Execution (DTDE) setting, in
which each agent learns an independent policy and acts autonomously based on their local
observations, and (ii) a Centralized Training and Centralized Execution (CTCE) setting,
where a single global policy is trained using full access to the global state which outputs
joint actions for all agents.

Our architecture is motivated by the simplicity and proven success of MARL in indus-
trial applications (e.g., Mnih et al., 2015; Silver et al., 2016). However, standard RL algo-
rithms often struggle in environments characterized by high stochasticity. These challenges
are amplified in MARL settings due to increased complexity and non-stationarity (Lowe
et al., 2017). While our MADH architecture leverages environmental stochasticity to en-
courage exploration—akin to techniques used in continuous control RL methods such as
DDPG (Lillicrap et al., 2015)—this passive approach to exploration is often insufficient.
Therefore, explicit stochastic policies are also incorporated into MADH to enhance explo-
ration and robustness.

2.1 Decentralized Training and Execution

In the DTDE setting, each agent i ∈ P maintains its own policy πθi : Oi → Ai, which
maps local observations to actions. These policies are parameterized as neural networks
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and trained independently using only local information. Agents do not observe the global
state, coordinate with others, or share information—neither during training nor execution.

The policies πθi consist of a feedforward neural network with L hidden layers and ReLU
activations, followed by a tanh:3

h0 = oi ∈ Oi, hℓ = σ
(
Wℓh

ℓ−1 + bℓ

)
, πθi(x) = tanh

(
WLhL−1 + bL

)
, ℓ = 1, . . . , L− 1

(1)
where {Wℓ, bℓ} are agent-specific trainable parameters. Recurrent alternatives such as
LSTMs may also be used in partially observable settings.

Each agent acts independently based on its private observations. These actions are
submitted to a central market mechanism, which computes prices and updates the envi-
ronment. The resulting global state induces new observations for the next individual agent
decisions. Figure 1.

Agent 1 t = 0 t = 1 t = 2 ... t = T cost

Agent 2 cost

Agent N cost

Figure 1: Each agent has an individual neural network policy that sequentially maps its
private observations to actions. The transition functions (shown in grey) determine the
observations available to each agent.

Policies are trained batch-wise via backpropagation through the full unrolled trajec-
tory of the environment. We distinguish two cases in DTDE: (i) backpropagation with
full computation graph, where agents engage in gradient descent through the environemnt

3The tanh function is used to bind the network’s output to a specific range. In our application, this
continuous output corresponds to two actions: the charging/discharging rate and the percentage of PV
production to curtail.
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updates, and (ii) backpropagation without full computation graph, where agents only con-
sider their action and not its influence on the environment (in our case the market price).
Each trajectory records observations, actions, and incurred costs, or

τ i
b =

{
(oi

t,b, ai
t,b, ci

t,b)
}T

t=0, (2)

where ci
t,b is the cost incurred by agent i at time t in batch b. After collecting a batch, the

average cost is computed as

C̄i = 1
B

B∑
b=1

T∑
t=0

ci
t,b, (3)

and agent parameters are updated via backpropagation, or

θi ← θi − α∇θiC̄i. (4)

Exploration is encouraged via randomization in actions. We use a decaying ϵ-greedy
scheme in which agents sample a random action uniformly from their action space with
probability ϵ and otherwise follow their policy output. This ensures broad exploration early
in training and shifts toward exploitation over time. Algorithm 1 summarizes training for
the DTDE setting.
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Algorithm 1 MADH with Decentralized Learning & Execution
1: Input: Agents {1, . . . , N}, horizon T , batch size B, episodes K, learning rate α

2: for each episode k = 1 to K do
3: Update probability of random action pε

4: Sample B days in parallel:
5: for training horizons b = 1 to B do
6: Initialize state s0, set cumulative costs Ci

b ← 0
7: for t = 0 to T do
8: Each agent i computes ai

t = πθi(oi
t)

9: With probability ρk replace each component of ai
t with random draws ε ∼ U [A]

10: Market clears: (st+1, {oi
t+1})f(st, (a1

t , . . . , aN
t ), ξt+1)

11: Accumulate cost: Ci
b +=ci

t

12: end for
13: end for
14: θi ← θi − α∇θi Ci

b, ∀i
15: end for

2.2 Centralized Learning and Execution

As an efficiency benchmark, we implement a central optimizer with full observability of all
agents’ states. A single policy πθ : S → A1 × · · · × AN is trained to minimize the total
cost, ∑N

i=1 Ci, using batch backpropagation. The architecture of the planner mirrors that
of the decentralized agents but unlike the individual agents it receives the complete state
at each time period. The central optimizer then outputs actions for all agents.

Again, a decaying ϵ-greedy exploration strategy is used during training to mitigate the
risk of converging to poor local minima and to promote robustness in continuous action
spaces. Importantly, this central optimizer does not maximize individual agent objectives,
but rather the aggregate total economic welfare of all agents.4

4Note that this central optimizer differs from the standard concept of a central planner in economic
models. In typical formulations, a central planner selects the allocation of resources to all agents in order
to maximize social welfare. In our case, the central optimizer instead selects the players’ actions in order
to maximize total welfare.
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Algorithm 2 MADH with Centralized Learning & Execution
1: Input: Number of agents N , horizon T , batch size B, episodes K, learning rate α

2: for each episode k = 1 to K do
3: Update probability of random action pε

4: Sample B days in parallel:
5: for training horizons b = 1 to B do
6: Initialize global state s0, set cumulative cost Cb ← 0
7: for t = 0 to T do
8: Compute joint action at = πθ(st)
9: With probability ρk, replace each component of at with a random variable ε ∼

U [A]
10: Market clears: st+1 = f(st, at, ξt+1)
11: Accumulate cost: Cb += ∑N

i=1 ci
t

12: end for
13: end for
14: Update policy: θ ← θ − α∇θ Cb

15: end for

Figure 2 shows a centralized optimizer in which a single neural network receives the
complete system state per period and outputs actions for all agents.

Optimizer t = 0 t = 1 t = 2 ... t = T reward

Figure 2: Centralized optimizer with joint action planning.

3 Model Setup

We apply our MADH architecture to peer-to-peer (P2P) trading on prosumer electricity
trading platforms. We model the market-clearing, price formation, and policy-learning
mechanisms as a partially observable Markov game (Littman, 1994; Eschenbaum et al.,
2022) in which prosumer agents interact over a finite horizon. Throughout, all energy-
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related variables are measured in kilowatt-hours (kWh) per trading period. Because we
discretize time into hourly intervals, 1 kWh is both a flow (one hour of power) and the unit
of stock for battery capacity.

3.1 Markov Game

Formally, the game is given by

G =
(
P, T , {Ai}, {Oi},S, T state, {ri}

)
,

with agents i ∈ P, periods t ∈ T = {1, . . . , T}, joint state st ∈ S, and stochastic transition
kernel T state(

st+1 | st, at
)
. Because each agent observes only a private signal oi

t ∈ Oi,
the game features imperfect information. Policies πi : (oi

1:t, ai
1:t−1) 7→ ai

t must therefore
cope with non-stationarity induced by the learning behavior of others. Our framework
models a general-sum game or mixed game (e.g. see (Zhang et al., 2021) without imposing
restrictions on the agents’ objectives (Hu and Wellman, 2003; Littman et al., 2001).

3.2 Agents

We assume that there are N prosumers, P = {1, . . . , N}, each endowed with photovoltaics
(PV) and a battery of capacity Bi ∈ R+. At the beginning of period t, agent i learns her
stochastic PV generation gi

t ∈ [0, Gi], stochastic inelastic demand di
t ∈ [0, Di], and current

battery state Bi
t ∈ [0, Bi]. She chooses a battery charge (positive) or discharge (negative)

bi
t ∈ [−Bi

t, Bi −Bi
t] and a curtailment share κi

t ∈ [0, 1]. Battery dynamics follow

Bi
t+1 = Bi

t + bi
t

(
1{bi

t≥0}ηch − 1{bi
t<0}(ηdis)−1)

, ηch, ηdis ∈ (0, 1], (5)

and net injection to the platform is xi
t = di

t + bi
t − (1 − κi

t)gi
t, positive for imports and

negative for exports (see e.g., Lara et al., 2018; Guerrero et al., 2020; Hönen et al., 2023b).
Each agent observes (Bi

t, di
t, gi

t, t) but neither others’ battery states nor their chosen actions,
making G a partially observable Markov game (POMG).

3.3 Environment

The platform aggregates injections, St = ∑N
i=1 max{−xi

t, 0} and Dt = ∑N
i=1 max{xi

t, 0},
and posts volume-weighted sell and buy prices pS

t and pD
t (denoted in €/kWh) that satisfy
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the corridor pE ≤ pS
t ≤ pD

t ≤ pI , where pE and pI are exogenous feed-in and retail
tariffs.5 Any admissible clearing rule is a mapping f : (xt, pE , pI) 7→ (pS

t , pD
t ) with residual

imbalances settled against the grid. Agent i’s one-period cost ci
t and total cost Ci are

ci
t =

xi
t pD

t , xi
t > 0,

xi
t pS

t , xi
t < 0,

Ci =
T∑

t=1
ci

t, (6)

respectively. Figure 3 shows the interaction of the two algorithms DTDE and CTCE with
the market model over one period of the game.

o1
1

o2
1

oN
1

a1
1

a2
1

aN
1

...
...

Market

o1
2

o2
2

...

oN
2

t = 1 t = 2

(a) Decentralized Algorithm (DTDE).

s1

a1
1

a2
1

aN
1

...

Market s2t = 1 t = 2

(b) Centralized Algorithm (CTCE).

Figure 3: Interaction of the decentralized and centralized algorithms with the market
model.

3.4 Pricing Mechanism

For our experiments, we use the mid-market-rate (MMR) rule as described by Long et al.
(2017). The benchmark price is pM = 1

2(pI + pE). If St = Dt at pM the market clears
at pS

t = pD
t = pM ; otherwise the short side trades at pM and the long side’s price adjusts

linearly toward the relevant grid tariff:

pS
t =


pM , St ≤ Dt,

pM Dt + pE(St −Dt)
St

, St > Dt,
pD

t =


pM St + pI(Dt − St)

Dt
, Dt > St,

pM , Dt ≤ St.

(7)

MMR is continuous in (pI , pE) and differentiable in PyTorch, enabling gradient-based policy
search. By avoiding the price collapse to pI or pE that characterises other popular discrete

5Note that participation constraints for agents imply the price corridor, as across jurisdictions prosumers
are always allowed to draw from the grid at the retail price and sell to the grid at the feed-in tariff.
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mechanisms in the literature, MMR allows for smoother price movements and changes to
surplus allocation, limiting sudden jumps in incentives for agents.

Q

P

SD

CS

PS

pE

pM

pI

(a) D(pM ) = S(pM ): uniform
price at pM .

Q

P

SD

CS

PS

pE

pD

pM

pI

(b) D(pM ) > S(pM ): price
gap favors suppliers.

Q

P

SD

CS

PS
pE

pS

pM

pI

(c) D(pM ) < S(pM ): price
gap favors buyers.

Figure 4: Surplus distribution under the Mid-Market Rate (MMR) pricing rule, driven by
supply-demand imbalances.

Figure 4 shows how MMR (partially) avoids corner solutions by allocating rent be-
tween consumer surplus (CS) and producer surplus (PS). When demand exceeds supply
(Figure 4b), sellers receive the highest feasible price (pS = pM ), while buyers pay a pre-
mium (pD > pM ). In the inverse case (Figure 4c), buyers pay pM , and sellers receive less.
As a result, there are smoother transitions and partial surplus sharing even in imbalanced
markets, unlike discrete-clearing mechanisms that collapse to pI or pE .

4 Experimental Setup

This section describes the data sources, learning architecture, simulation scenarios and
evaluation metrics used to assess the Multi-Agent Deep Hedging (MADH) framework.

4.1 Data sets

We make use of two data sources. One, we develop a synthetic data set that provides full
experimental control and simplicity. Each day is divided into T = 24 hourly steps. Every
agent receives three exogenous inputs per time horizon: demand, PV generation, and initial
state of charge. Clear-sky PV is a half-sine curve from 6am to 8pm and and demand follows
a bimodal profile with peaks at 8am and 7pm. Cloud cover is an AR(1) factor truncated to
[0.4, 1.0]. Daily demand is rescaled by Beta(4, 4) (±30 %) and perturbed by N (0, 0.152).
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Two, we build an empirical data set that combines photovoltaic (PV) output with
anonymised household load traces from smart-meter data. First, the PV output is gener-
ated with pvlib-python 0.11, an open-source Python library for modelling photovoltaic
energy systems (Anderson et al., 2023).6 The underlying weather data is taken from the
Photovoltaic Geographical Information System (PGIS) and a typical meteorological year
for Zurich (Switzerland).7. The PGIS database returns 8 760 hourly records which are
then timezone-converted to Europe/Zurich. Second, the household demand profiles are
taken from the anonymised CKW smart-meter archive (Centralschweizerische Kraftwerke
AG (CKW), 2025). We only use meters with 10–20 kWh average daily use and ≥ 30 clean
days are retained, giving hourly 24-element vectors indexed by date. We augment this raw
data by adding noise for training. Specifically, for each simulation day the loader adds
i.i.d. noise U(0.7, 1.3).

Note that unless otherwise indicated, pI is set at 0.3 €/kWh and pE is 0.05 €/kWh,
battery charge and discharge efficiencies are ηch = ηdis = 0.95, and initial battery states
are sampled from U [0, Bi].

4.2 MADH Model Architecture and Training

Each agent’s policy is a two-layer feed-forward network with 32 hidden units and ReLU
activations; the output layer uses tanh to bound actions. The central optimizer benchmark
employs a larger network (128 units per layer in setups (i) and (ii), 512 in setup (iii), see
Section 5). Networks are trained with Adam stochastic gradient descent (α = 10−3, batch
64) over K = 120 episodes. Exploration follows an ε-greedy schedule starting at 0.5 and
decaying by factor 0.95 per episode. All experiments run under Python 3.9.7 and PyTorch
2.2.1 on Apple M1 (CPU).

4.3 Scenarios

We evaluate MADH in three different scenarios.
6We employ ASHRAE angle-of-incidence (AOI) optics, which models the angular-dependent transmis-

sion losses using a single-parameter function, SAPM (Sandia Array Performance Model) temperature mod-
eling, which determines cell temperature from effective irradiance and ambient conditions using empirically
derived coefficients, and a 96% inverter efficiency. The PV system parameters are randomized within
realistic ranges: tilt [25◦, 35◦] and azimuth [165◦, 195◦] (south-facing) ±15◦.

7Specifically, we obtain the data for the coordinates 47.38◦N, 8.54◦E via the get_pvgis_tmy Python
library (Jensen et al., 2023)

14



(i) Two Homogeneous Agents: Two identical agents, each endowed with a battery
of rated capacity (B = 8 kWh). The load and photovoltaic (PV) profiles are sourced
from the synthetic data set. This setup serves as a baseline to understand agent
incentives and test for strategic behavior.

(ii) Three Heterogeneous Agents: Three agents who are identical in all respects
except for their battery storage capacity. The load and PV profiles are as before
sourced from the synthetic data set. One agent has no storage (0 kWh), the second
has a medium-sized battery (4 kWh), and the third has a large battery (8 kWh).
This scenario is designed specifically to study how strategic behavior and economic
welfare are affected by asymmetries between participants.

(iii) 32 Heterogeneous Agents: Large-scale energy community consisting of 32 hetero-
geneous prosumers. The load and PV profiles of each household are sourced from the
real-world data set. Agents are divided into four types based on their asset configu-
rations: (i) agents with 8 kWh battery storage and PV generation, (ii) agents with 4
kWh batteries and PV, and (iii) agents with generation capacity but without storage
and (iv) agents without generation and storage. This scenario tests the stability and
scalability of our MADH architecture and robustness of previous findings.

4.4 Outcome Measures

To evaluate efficiency of the agents’ learned policies with MADH, we consider a normal-
ization of the agents’ surplus relative to the surplus under the central optimizer denoted
by ∆ and ∆i respectively, or

∆ = COS − CDec
COS − CCent

∆i = Ci
OS − Ci

Dec
Ci

OS − Ci
Cent

(8)

where CCen is the total system cost under the centralized planner, CDec under decentralized
coordination (MADH), and COS under a one-shot Nash strategy.

Note that ∆i > 1 is possible, as an individual agent may achieve lower cost under
decentralized coordination than in the centralized solution, due to the central planner
optimizing for system-wide welfare rather than individual profit. However, by construction,
∆ ≤ 1, as decentralized coordination cannot outperform the central planner in terms of
aggregate welfare.
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In addition, to verify that the converged decentralized policies form a stable outcome,
we test for an ε-Nash Equilibrium, where ε is a real non-negative parameter. The set of
policies of all agents are an equilibrium if no agent can gain more than ε by unilaterally
changing its policy while all other agents’ policies remain fixed. To test for an ε-Nash
Equilibrium, we determine the unilateral deviation regret of agents. For each agent i, we
first train the full N -agent system to find the set of MADH equilibrium policies (π∗

Dec).
Then, we freeze the policies of all agents except i and retrain agent i to find its optimal
best-response policy, πi

BR. The regret for agent i, denoted Ri, is the cost improvement it
gains by switching to this best-response policy, or

Ri = Ci
Dec − Ci

BR
|Ci

Dec|
(9)

where Ci
Dec is the agent’s cost under the original decentralized equilibrium policy, and

Ci
BR is its cost under the newly computed best-response policy, evaluated against the fixed

policies of its opponents.
A regret value Ri close to zero (i.e., less than ε) implies that the agent’s original policy,

π∗,i
Dec, was already its (approximate) best response to the policies of the other agents, and

thus there is no incentive to deviate. The sum of all individual regrets, (∑iRi), then mea-
sures the overall stability of the set of converged policies. A low sum of individual regrets
is strong evidence that the MADH algorithm has converged to an ε-Nash Equilibrium.

5 Experimental Findings

This section presents the empirical results from three different scenarios that test the
performance, stability, and scalability of MADH. We begin with the simplest possible
setup with two homogeneous agents to explore the learning dynamics and policies. We then
introduce a third agent and vary the size of the battery among the three players – where
one agent has no battery, i.e. a size of zero – to analyze the distributional consequences
of strategic behavior. Finally, we study a large setting with 32 agents and demonstrate
MADH’s scalability as well as the robustness of the previous findings.
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5.1 Two Homogeneous Agents

Figure 5 shows the mean episode cost over 120 training episodes for two homogeneous agents
with photovoltaic generation and a battery. Both the decentralized learners (in blue) and
the central optimizer (red) show rapid cost reduction, with the majority of the learning
occurring within the initial 30 episodes. This fast convergence is particularly notable given
the non-convex nature of the payoff landscape, because the strategic interaction between
agents can introduce plateaus to the loss function that could lead the learner to converge
to local minima.

Figure 5: Mean per-episode total costs in the symmetric two-agent market.

Table 1 shows the efficiency of MADH in comparison to the central optimizer and
to the (repeated) myopic one-shot Nash equilibrium. We provide results both when the
decentralized learners have access to the full computation graph (left) and when they do
not (right).8 We find that when agents have access to the full computation graph, the
total decentralized costs are almost indistinguishable from those of the central planner.
Specifically, we find that ∆ = 0.996 and the total cost is identical for Prosumer 2 and
only slightly higher under the decentralized case for Prosumer 1. We also observe a small
difference in net grid exports. The central optimizer imports 15.08 kWh compared to 13.78

8The former correspond to the convergence results for the decentralized case in Figure 5.
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kWh with MADH, and similarly exports increase from 18.07 kWh to 19.57 kWh.

With Graph Without Graph

Prosumer 1 Prosumer 2 Total Prosumer 1 Prosumer 2 Total

CCent 0.782 0.782 1.564 0.782 0.782 1.564
CDec 0.793 0.782 1.575 0.892 0.893 1.786
COS 2.254 2.254 4.509 2.254 2.254 4.509
∆ 0.993 1.000 0.996 0.925 0.925 0.925

Table 1: Efficiency and cost in the symmetric two-agent market.

However, when agents do not have access to the full computation graph, they perform
less well and we obtain ∆ = 0.925 with the total cost rising to 1.79 compared to 1.58.9 The
difference between the performance with the full computation graph compared to without
it, stems from the interaction of their total net demand with the clearing mechanism.
When the agents have access to the computational graph, they account for the endogenous
reaction of the market price to their actions. In the two-agent, symmetric case, this is
particularly important in the evening because the net demand in the evening hours for
both agents is near-zero.

This implies that any significant deviation by one agent towards increased supply in
evening hours would lead to the price dropping to the lower bound pE , making the deviation
unprofitable. This creates a strong implicit coordination mechanism that leads to the
agents under MADH achieving virtually the same outcome as the centralized optimizer.
As a result, under MADH the agents avoid fully discharging their batteries during the
evening hours (in line with the behavior of the centralized optimizer). In effect, the agents
strategically withhold capacity from the market. In the case where agents do not have
access to the full computational graph in turn, they do not fully internalize their impact on
the price and supply more energy in the evening hours, explaining their worse performance.

We further find a regret for agent 0 of 0.49% and for agent 1 of 0.16% in the setting with
access to the full computation graph. The sum of regrets is −0.33%. This strongly suggests
that the learned strategies are stable and represent a ε-Nash equilibrium. Figure 6 shows
the policies of Prosumer 1. We document the learned policy both in the decentralized

9In addition, in either case, the agents perform much better compared to the myopic one-shot outcome.
Cost per prosumer are around 35% of the cost under one-shot behavior.
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MADH case and for the central optimizer. In both settings, higher PV supply leads to
stronger charging behavior. There is also a tendency to reduce charging or even discharge
as the battery state increases.

Figure 6: Battery charging policies of Prosumer 1 in the symmetric case. The y-axis shows
the PV supply gt, and the x-axis indicates the given battery state Bt−1. The color scale
represents the chosen action (charge to discharge on a [−1, 1] interval). Policies are shown
for three different demand levels dt.

We run one additional test in which we set the feed-in tariff to a negative value (pE =
−0.05 €/kWh). The results, shown in Figure 7, demonstrate that agents with the full
computation graph learn sophisticated responses to avoid penalties. Under a standard
positive feed-in tariff, both the centralized and decentralized optimizers allow for negative
net balance of the platform (panel (a)). However, when the tariff becomes negative, agents
immediately learn to suppress exports by curtailing PV production during periods of high
generation. This response is so effective that the system-wide balance is barely negative
during high generation, as agents prefer to curtail rather than risk being penalized for
exporting surplus energy (panel (b)). Thus, agents do not just react to prices but actively
manage their assets to shape market outcomes. As panel (c) shows, with a negative feed-in
tariff, the market-clearing selling price in fact rarely falls to the −0.05 €/kWh floor.
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(a) Net balance (positive pE). (b) Net balance (negative pE). (c) Selling prices (negative pE).

Figure 7: Impact of a negative feed-in tariff (FIT) on system balance and prices. A negative
FIT (b) reverses the near-zero system balance seen with a positive FIT (a) as agents curtail
exports. Market-clearing prices (c) remain mostly above the penalty benchmark.

5.2 Three Heterogeneous Agents

Next, we study a setting with three prosumers that are identical in all respects except for
their battery sizes: Prosumer 1 has no storage, Prosumer 2 has a medium-sized battery
(4kWh), and Prosumer 3 has a large battery (8kWh). This setup allows us to study how
asymmetry between agents affects outcomes under MADH and centralized learning, and
how these are influenced by the presence of a full computation graph. The main results
are documented in Table 2 and Table 3.

Large (8 kWh) Medium (4 kWh) None (0 kWh) Total

CCent 1.426 2.030 2.802 6.258
CDec 1.254 2.006 3.000 6.260
CST 3.086 3.086 3.086 9.258
∆ 1.104 1.023 0.301 0.999

Table 2: Costs (C) and efficiency (∆) in the asymmetric three agent market with access
to the full computation graph.

We find that prosumers with batteries benefit from decentralized decision-making, while
the agent without a battery is better-off under centralized optimization. In fact, under
DTDE MADH we find ∆ = 0.999, implying that rent is redistributed from the agent
without a battery to the agents with the batteries compared to the central optimizer
solution. This is again explained by the capacity withholding of individual agents with
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batteries in the evening hours. This raises the buying price above the mid-market rate
(pD > pM ), making the agent without a battery worse off. However, because the prosumers
electricity demanded remains the same irrespective of the price, this increase in prices does
not translate to a decrease in quantity sold and is thus a direct transfer of rent from
the prosumer without a battery to the prosumers with a battery while total welfare is
unaffected.

When agents do not have access to the full computation graphs (Table 3), the effects
are more pronounced. When the agents take prices as exogenous, there is a lower efficiency
(∆ drops from 0.999 to 0.962).

Large (8 kWh) Medium (4 kWh) None (0 kWh) Total

CCent 1.426 2.030 2.802 6.258
CDec 1.237 2.077 3.059 6.373
CST 3.086 3.086 3.086 9.258
∆ 1.114 0.956 0.094 0.962

Table 3: Costs (C) and efficiency (∆) in the asymmetric three agent market without access
to the full computation graph.

We also find that the individual regret for each agent is once again very small. The
agent with a medium-sized battery was able to slightly reduce its cost (by 0.03%) while
the prosumer with the large battery actually performed worse (−0.39%). Total regret is
−0.36%. These very small regret values suggest as before that the learned policies with the
full computation graph in this setting are near-optimal responses given others’ strategies,
i.e. agents’ strategies form an ε-Nash equilibrium.

5.3 32 Heterogeneous Agents

In order to validate the scalability and practical applicability of our MADH framework,
we now study its performance with a large set of agents. We consider 32 heterogeneous
agents whose load and generation profiles are derived from real-world data. Our results
demonstrate that the decentralized MADH approach is practical at scale. Figures 8a
and 8b shows the learning curves (mean and standard deviation) for two types of agents:
equipped with a 8kWh battery and photovoltaics (panel (a)) and with a 4 kWh battery
and photovoltaics (panel (b)), respectively. We observe robust convergence of the average
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cost per episode which steadily decreases before reaching a stable plateau.
The converged policies correspond to economically rational behavior. As illustrated

in Figures 8c and 8d, the learned policies implement an arbitrage strategy. Agents sys-
tematically accumulate energy in their batteries during the midday period (approximately
10:00–16:00), when high aggregate PV generation depresses the local market price. They
then discharge this stored energy in the evening (approximately 18:00–22:00) when demand
is high. However, they do not fully discharge their batteries by the end of the day and
choose to keep 10-15% of the maximum battery charge. This highlights again the capacity
withholding that agents engage in, in order to keep the platform price above the feed-in
tariff in evening hours. This shows that agents in our large-scale experiment have con-
sistently learned to account for endogenous price movements in response to their actions,
because at the given (positive) market price, ceteris paribus, discharging more is always
profitable.

The heterogeneity in agents’ battery sizes and photovoltaics leads to systematic differ-
entiation in their economic outcomes. Figure 9 shows the distribution of realized daily costs
by agent type. Prosumers with larger batteries and PV systems (i.e., greater flexibility)
have operational cost. For types with a battery, the operational cost are even negative on
average.

We also observe that the decentralized learning approach yields superior pricing out-
comes relative to the myopic one-shot strategy. Specifically, prosumers achieved both higher
selling prices (€0.1731 vs. €0.1705) and lower buying prices (€0.2454 vs. €0.2557). Across
all deviation tests, no agent was able to reduce their cost by more than 1%. The maximum
individual regret observed was 0.55%, indicating that the strategic behavior learned by the
agents is indeed stable.

6 Conclusion

This paper introduces Multi-Agent Deep Hedging (MADH), a novel and tractable frame-
work to model and optimize dynamic hedging and trading decisions when market prices
are affected by a traders’ actions. By extending financial deep hedging methods to a
multi-agent setting, MADH provides a powerful methodology to study behavior in complex
multi-agent systems. We apply MADH to model and benchmark prosumer strategies on
decentralized electricity trading platforms. The simulation experiments show that agents
consistently converge to stable and high-quality policies and that MADH robustly scales
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(a) Learning curve: 8 kWh battery + PV (b) Learning curve: 4 kWh battery + PV

(c) Battery states: 8 kWh battery + PV (d) Battery states: 4 kWh battery + PV

Figure 8: Learning convergence and resulting battery arbitrage behaviour for two prosumer
types. Top row: average per-episode costs stabilise for agents with larger (left) and smaller
(right) batteries. Bottom row: corresponding state-of-charge trajectories reveal midday
charging and evening discharging once the policy converges.
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Figure 9: Distribution of daily costs by prosumer type.

to settings with many agents.
We document three main empirical findings. First, when agents have access to the full

computation graph, decentralized MADH attains efficiency near-equal to a central opti-
mizer. Total welfare and individual regrets generally differs from the central optimiser by
less than 1%, indicating convergence to an -Nash equilibrium. Second, strategic capacity
withholding emerges endogenously and redistributes welfare from agents without a battery
to agents with a battery. Removing access to the full computation graph, however, breaks
this implicit coordination, amplifies price volatility, and reduces system efficiency. Third,
MADH scales well. In a 32-agent environment calibrated to smart-meter data, all agent
types converge rapidly, maintain sub-percent regret, and exhibit the same economically
rational charge–discharge pattern observed in smaller experiments. Our findings demon-
strate that MADH provides a tractable, scalable means of analysing strategic behaviour in
dynamic markets.

An interesting avenue for future research is to exploit the flexibility of the MADH frame-
work to study different market mechanisms and regulatory choices for prosumer trading
platforms or apply it to a different context. Moreover, we have refrained from modeling
the underlying electricity grid in more detail in our benchmarking application. Introducing
a more realistic grid model would add important trading restrictions and transaction cost
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to the learning problem.
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A Existence of a global minimum for the centralized opti-
mizer

We first state the formal assumptions on the model on the admissible prices (Assumption
1) and on the admissible actions and fees (Assumption 2). We then provide a simple formal
proof for the existence of a cost-minimum (or social planner optimum) in Proposition 1.

Assumption 1 (Admissible Prices). The platform price functions

pD
t , pS

t : R2
+ → [pfit, pI ] (10)

for each period t = 1, . . . , T satisfy:

(i) Continuity: pD
t , pS

t are continuous in (Dt, St).

(ii) Weak monotonicity:

∂pD
t

∂Dt
≥ 0,

∂pD
t

∂St
≤ 0,

∂pS
t

∂St
≤ 0,

∂pS
t

∂Dt
≥ 0. (11)

(iii) Price corridor:
pfit ≤ pS

t (Dt, St) ≤ pD
t (Dt, St) ≤ pI . (12)

(iv) Budget balance:
Dt ≥ St : (Dt − St) pI = Dt pD

t (Dt, St) − St pS
t (Dt, St),

beginequation4pt]St > Dt : (St −Dt) pfit = St pS
t (Dt, St) − Dt pD

t (Dt, St).
(13)

Assumption 2 (Technological Constraints). There are N < ∞ agents. Each agent i

chooses {(bi
t, κi

t)}Tt=1 in the compact set

Ai
T =

T∏
t=1

[
−Bi

t−1, B
i −Bi

t−1

]
× [0, 1], (14)

where Bi
t−1 is the state-of-charge at t− 1, B

i the capacity. Fixed fees {τ c
t , τp

t } are nonneg-
ative and exogenous.
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Proposition 1 (Existence of Social Planner Optimum). Under Assumptions 1 and 2, the
social planner’s problem

min
{bi

t,κi
t}

N∑
i=1

T∑
t=1

xi
tp

D
t (Dt, St), xi

t ≥ 0,

[4pt]xi
tp

S
t (Dt, St), xi

t < 0,
(15)

where xi
t = di

t + bi
t − κi

tg
i
t, Dt =

∑
i

max{xi
t, 0}, St =

∑
i

max{−xi
t, 0}, admits at least one

global minimiser.

Proof. The joint action space F = ∏N
i=1 Ai

T is a finite product of compact intervals, hence
compact. The maps (bi

t, κi
t) 7→ (xi

t) 7→ (Dt, St) 7→ (pD
t , pS

t ) are continuous by Assumption
1. The stage-cost xi

t 7→ xi
t p is continuous and matches at xi

t = 0. Therefore the total cost
is continuous on F , and by Weierstrass’s theorem it attains a minimum.
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